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LETTER TO THE EDITOR 

Growing self-avoiding surfaces 
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Received 15 December 1988 

Abstract. Two growing self-avoiding surfaces are introduced as possible models of rapidly 
polymerising polymer membranes. Monte Carlo simulations indicate that diffusion-limited 
self-avoiding surfaces have fractal dimension D = 2.35 *0.05, and so are in a different 
universality class than diffusion-limited aggregates. In contrast, Eden self-avoiding surfaces 
appear to be compact, just as the clusters are in the usual Eden model. Both growing 
surfaces have different fractal dimensions than previously considered models of self- 
avoiding surfaces in equilibrium. 

The equilibrium properties of flexible polymer chains are now reasonably well under- 
stood (de Gennes 1979). In addition, there has been significant progress in studying 
the growth of polymer chains far from equilibrium (Debierre and Turban 1986, Bradley 
and Kung 1986, Meakin 1988). Recently, intense theoretical interest has centred on 
the equilibrium behaviour of flexible polymer membranes (Redner 1985, 1986, Glaus 
1986, 1988, Kantor et a1 1986, 1987). The membranes are treated as random self- 
avoiding surfaces in these studies. The process of polymerisation, if present at all, is 
taken to be so slow that it may be neglected on the timescale characterising the 
fluctuations of the membrane. 

In this letter, we look at the opposite limit in which the process of polymerisation 
is much more rapid than the internal fluctuations of the surface. The membrane grows 
by the addition of new plaquettes to its perimeter. Structural relaxation and thermal 
fluctuations within the membrane are neglected, just as in diffusion-limited aggregation 
(DLA) (Witten and Sander 1981) or the Eden model (Eden 1961). We will present 
results of Monte Carlo simulations of diff usion-limited growing self-avoiding surfaces 
(DLSAS) and Eden growing self-avoiding surfaces (ESAS) on a simple cubic lattice. In 
both models the basic constituent of the growing surface is a plaquette, i.e. a unit 
square of the lattice. Each of the four free edges of a plaquette may stick only once, 
when it overlaps a free edge belonging to another plaquette. The surfaces are strictly 
self-avoiding because two plaquettes are not allowed to occupy the same face of the 
lattice and also because no more than two plaquettes are allowed to have a common 
edge. 

Although thermal fluctuations are neglected in both the DLSAS and DLA, these 
problems differ in one important respect: in the DLSAS each bond of the lattice can 
have at most two occupied plaquettes adjacent to it. This condition ensures that the 
surface is locally two-dimensional, a constraint which we shall see is relevant. This 
work on the DLSAS is a natural extension of our previous work (Debierre and Turban 
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1986, Bradley and Kung 1986) on the diffusion-limited self-avoiding walk (DLSAW) in 
which each site on the aggregate is constrained to have at most two neighbouring 
bonds, so the polymers formed are topologically linear. The local constraint is relevant 
in the DLSAW, as it is for the DLSAS. Surprisingly, the ESAS appears to be in the same 
universality class as the usual Eden model in three dimensions. 

In the DLSAS a seed plaquette is initially placed on an arbitrary face of a simple 
cubic lattice and is held fixed there. A sphere Z of radius Ro is drawn about the seed. 
A diffusing plaquette is then released at a randomly chosen point on Z. The plaquette 
diffuses until one of its edges sticks to an edge of the seed plaquette. A second plaquette 
is then released on Z, and it diffuses until it adheres to the perimeter of the membrane. 
This process continues with the addition of a third plaquette, a fourth plaquette, and 
so on. Each time a new plaquette is added to the growing surface, the maximum 
distance from the seed to a plaquette in the membrane, R,,, , is recomputed. We took 
Ro= R,,,+5. If any plaquette wanders further than 2Ro away from the seed, it is 
discarded and another diffusing plaquette is released on Z. Finally, the growth process 
is terminated when part of the surface reaches the lattice boundary. 

We must still describe how the moving plaquette diffuses. At each Monte Carlo 
step, one of the four edges of the diffusing plaquette is randomly selected and the 
plaquette is rotated around this edge by + ~ / 2  or - ~ / 2  with equal probability. The 
move is rejected if it brings an edge of the moving plaquette onto a lattice bond which 
already has two adjacent plaquettes. This special type of diffusion ensures that the 
surface will grow indefinitely, because when a new plaquette sticks to the surface 
perimeter, the edge around which it has last rotated remains free for further sticking. 
The centre of mass of the plaquette diffuses on a lattice different from the underlying 
cubic lattice, so we have not attempted to increase the diffusion step when the plaquette 
is far from Ro.  With these rules, the DLSAS should apply to the diffusion-limited 
growth of a polymer membrane in a dilute solution of monomers, provided that the 
characteristic diffusion time is much shorter than the time characterising the relaxational 
dynamics of the membranes. 

It is clear that the local constraint alters the short-range structure of the aggregates 
in the DLSAS. A crossover to the same scaling behaviour as in DLA in three dimensions 
cannot be ruled out a priori; however our simulations give strong evidence against 
such a crossover. Figure 1 gives a log-log plot of the radius of gyration R, of the 
surfaces as a function of the number of plaquettes N they contain, the data being 
averaged over 100 samples on a 101 x 101 x 101 lattice. For large surfaces, R,- N ' l D  
and we find a fractal dimension D = 2.35 * 0.05, in contrast to the result D = 2.5 for 
DLA in three dimensions (Meakin 1983a, b). 

An equilibrium model of self-avoiding surfaces with the same excluded-volume 
constraints that we impose here has recently been studied by the exact enumeration 
method (Redner 1985, 1986). It is believed to belong to the same universality class as 
lattice animals (Durhuus et a1 1984, Glaus 1986) which have fractal dimension D = 2 
in three dimensions (Parisi and Sourlas 1981). Kantor et a1 (1986, 1987) studied the 
equilibrium self-avoiding surface with fixed connectivity. Their Flory theory and Monte 
Carlo work both point to a fractal dimension D=2.5. Our result D=2.35*0.05 
strongly suggests that the DLSAS is in a different universaltiy class than both these 
models of self-avoiding surfaces in equilibrium. 

We have also simulated Eden growing self-avoiding surfaces ( ESAS) with the same 
self-avoiding constraints as for DLSAS. At each step, a new plaquette is allowed to 
occupy with equal probability any active perimeter face, i.e. any empty face connected 



Letter to the Editor L215 

8 
-1 

0 2 1, 6 

Ln N 

Figure 1. A log-log plot of the mean radius of gyration R,  against the size N, for the 
diffusion-limited self-avoiding surfaces. The values have been averaged over 100 samples 
of 2250 plaquettes on a 101 x 101 x 101 cubic lattice. The curve has a linear part of slope 
D = 2.35 over approximately two decades. 

to the surface and satisfying the self-avoiding constraints. We present evidence that 
the fractal dimension is exactly 3 in this model, just as in the usual Eden model in 
three dimensions (Richardson 1973, Dhar 1985, Leyvraz 1985), so that the constraint 
that the surfaces be locally two-dimensional is irrelevant for the ESAS. 

One thousand growing Eden surfaces of size lo4 have been simulated on a 101 x 
101 x 101 cubic lattice. The surfaces obtained for ESAS are much more compact than 
those for DLSAS, as can be seen in figure 2. In fact, we were able to grow a series of 
10 surfaces containing 5 x lo4 plaquettes without reaching the boundaries of a 91 x 91 x 
91 lattice. In figure 3 a plot of In (R,) against In ( N )  is shown. A linear extrapolation 

( a  1 ( b )  

Figure 2. Two typical surfaces grown until the boundaries of a 15 x 15 x 15 cubic lattice 
are reached. The diffusion-limited surface ( a )  contains 71 plaquettes and is much more 
ramified than the Eden surface (6) which contains 224 plaquettes. 
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Figure 3. A plot of In R,  against In N for the Eden self-avoiding surfaces. A linear fit of 
the rightmost part of the curve gives a slope D 3.3, showing that the asymptotic regime 
has not yet been reached. 

of the rightmost part of the curve would give a fractal dimension of about 3.3, which 
shows that, even for such large N values, we are still in a transient regime. However, 
the evolution of the fractal dimension D with N can be obtained using an effective 
exponent 

Di( N) = In{( N f  i ) / (  N - i)}/ln{Rg( N f i)/Rg( N - i ) }  

where R,(N) is the mean radius of gyration for the surfaces of size N and i a fixed 
positive integer. In figure 4, which shows D5( N) as a function of In (N),  we can see 
that convergence of the fractal dimension toward D = 3 for higher values of N is very 
probable. Completely analogous behaviour is observed for the usual Eden model 
(Peters et a1 1979). 

3.4 1 
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Figure 4. The variation of the effective fractal dimension D , ( N )  as a function of In N for 
the ESAS. Gradual convergence toward D = 3 is apparent. 
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Unlike in the DLSAS, termination of the growth process by trapping can occur for 
the ESAS. For the kinetic self-avoiding walk (Majid et al 1984, Lyklema and Kremer 
1984)-an Eden growth model for self-avoiding walks (sAw)-a crossover toward the 
equilibrium SAW which is due to non-local trapping has been predicted (Peliti 1984, 
Pietronero 1985) and was subsequently observed in numerical simulations (Lyklema 
and Kremer 1986). For the ESAS, however, there is no obvious reason why trapping 
would produce a crossover to the equilibrium self-avoiding surface, with D = 2. 
Moreover, our numerical results are highly incompatible with a value of two for the 
fractal dimension. 

We have also considered the growth of the ESAS perimeter. A surface containing 
N plaquettes was found to have Np empty perimeter faces with Np- No.* and the 
perimeter radius of gyration scaled as Rp- Np1'3, as for the bulk. These exponents 
are still likely to vary, since asymptotic N values have not yet been reached. 

In conclusion, we have performed Monte Carlo simultations of two models of 
growing self-avoiding surfaces. The growing surfaces were constrained to be locally 
planar. This local constraint has been shown to be relevant when the growth is diffusion 
limited (DLSAS), and we find a fractal dimension D = 2.35 f 0.05 in this case. On the 
other hand, when the growth is of the Eden type (ESAS) the constraint appears to be 
irrelevant and we obtain compact surfaces. 

We would like to thank the Colorado Institute of Computational Studies for providing 
time on the CDC Cyber 205 supercomptuter. This work was supported in part by an 
IBM Faculty Development Award to RMB. 
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